Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Milan Erben, ${ }^{\text {a* }}$ Ivana Císařová, ${ }^{\text {b }}$ Jaromír Vinklárek ${ }^{\text {a }}$ and Jaroslav Holeček ${ }^{c}$

${ }^{\text {a }}$ Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nám. Čs. legií 565, Pardubice 532 10, Czech Republic,
${ }^{\text {b }}$ Department of Inorganic Chemistry, Charles University, Hlavova 2030, Prague 128 40, Czech Republic, and 'Institute of Polymeric Materials, Faculty of Chemical Technology, University of Pardubice, Nám. Čs. legií 565, Pardubice 532 10, Czech Republic

Correspondence e-mail: milan.erben@upce.cz

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.025$
$w R$ factor $=0.065$
Data-to-parameter ratio $=22.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Trichloro($\boldsymbol{\eta}^{5}$-1,2,3-trimethylcyclopentadienyl)titanium(IV)

The crystal structure of the title compound, $\left[\mathrm{Ti}\left(\mathrm{Me}_{3} \mathrm{Cp}\right) \mathrm{Cl}_{3}\right]$, where $\mathrm{Me}_{3} \mathrm{Cp}$ is 1,2,3-trimethylcyclopentadienyl $\left(\mathrm{C}_{8} \mathrm{H}_{11}\right)$, was determined as part of our investigation of monocyclopentadienyltitanium(IV) trihalides. The title compound exhibits a three-legged piano-stool geometry. The $\mathrm{Ti}-$ ring distance is 2.0120 (7) A․

Comment

The structure of the title compound, (I), a catalyst precursor for olefin polymerization, has been analysed.

(I)

Fig. 1 shows the η^{5} coordination of the trimethyl-substituted cyclopentadienyl ring to the TiCl_{3} moiety, which is akin to the structures of similar half-sandwich $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{3}$ complexes $\left(\mathrm{Cp}^{\prime}\right.$ is a substituted cyclopentadienyl ligand).

The geometry around the Ti atom can be described as a three-legged piano-stool configuration, where the plane defined by the three Cl atoms and the plane of the cyclopentadienyl ring are almost parallel, with an angle of 0.77 (7) ${ }^{\circ}$ between them. The distance between the Ti atom and the centre of the ring is longer than in $\left[\mathrm{Ti}(\mathrm{MeCp}) \mathrm{Cl}_{3}\right]$ [2.0042 (15) A \AA and shorter than in $\left[\mathrm{Ti}\left(\mathrm{Me}_{4} \mathrm{Cp}\right) \mathrm{Cl}_{3}\right]$ [2.0151 (17) \AA] or $\left[\mathrm{Ti}\left(\mathrm{Me}_{5} \mathrm{Cp}\right) \mathrm{Cl}_{3}\right][2.0211$ (7) \AA A (Kirschbaum \& Giolando, 1991; Pevec, 2003).

Two of the methyl C atoms, C6 and C7, are displaced slightly out of the ring plane, away from the TiCl_{3} fragment (Table 1). The third C atom is displaced much less, with an angle of $0.34(10)^{\circ}$ between the ring plane and the $\mathrm{C} 5-\mathrm{C} 8$ bond. This fact can be attributed to the steric hindrance caused by the Cl atoms, where the $\mathrm{Cl} 2 \cdots \mathrm{C} 8$ distance [3.608(2) \AA] is longer than the $\mathrm{Cl} 2 \cdots \mathrm{C} 7$ and $\mathrm{Cl} 3 \cdots \mathrm{C} 6$ distances [3.295 (2) and 3.340 (2) Å, respectively].

Experimental

The title compound was prepared according to the trimethylsilylation procedure of Cardoso et al. (1980). (1,2,3-Trimethylcyclopentadienyl)trimethylsilane, obtained from 1,2,3-trimethylcyclopentadienyllithium (Broussier et al., 1997) and chlorotrimethylsilane, was reacted with titanium tetrachloride (2% excess) in toluene. After evaporation of volatiles, the resulting sticky brown product was purified by repeated vacuum sublimation, yielding 42% of a red-

Received 21 June 2004 Accepted 28 June 2004 Online 17 July 2004
orange solid. Suitable crystals of (I) were obtained by sublimation at $10^{-3} \mathrm{~Pa}$, at a temperature of 353 K . Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right.$, p.p.m.) : $6.72(s, 2 \mathrm{H}), 2.40(s, 6 \mathrm{H}), 2.33(s, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right.$, p.p.m.): $139.6,137.2,123.5,16.2,13.3 ;{ }^{49} \mathrm{Ti}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right.$, p.p.m..): -225.1 (half-width 36.9 Hz); ${ }^{47} \mathrm{Ti}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right.$, p.p.m..): -491.4 (half-width 84.6 Hz). Elemental analysis, calculated for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{Cl}_{3}$ Ti: $\mathrm{C} 36.75, \mathrm{H} 4.24, \mathrm{Cl} 40.68 \%$; found: C 36.28, H 4.21, Cl 40.47%.

Crystal data

$\left[\mathrm{Ti}^{2}\left(\mathrm{C}_{8} \mathrm{H}_{11}\right) \mathrm{Cl}_{3}\right]$
$M_{r}=261.42$
Triclinic, $P \overline{1}$
$a=6.6990(2) \AA$
$b=8.3360(3) \AA$
$c=10.7120(4) \AA$
$\alpha=82.9070(19)^{\circ}$
$\beta=83.30(2)^{\circ}$
$\gamma=67.368(2)^{\circ}$
$V=544.74(3) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.594 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

$$
\text { Cell parameters from } 2345
$$

reflections

$\theta=1-27.5^{\circ}$
$\mu=1.47 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
Prism, red
$0.25 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector
diffractometer
φ and ω scans
Absorption correction: none
8461 measured reflections
2488 independent reflections

2291 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.6^{\circ}$
$h=-8 \rightarrow 8$
$k=-10 \rightarrow 10$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0307 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$	$\quad+0.2233 P]$
$w R\left(F^{2}\right)=0.065$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.06$	$(\Delta / \sigma)_{\max }=0.001$
2488 reflections	$\Delta \rho_{\max }=0.30 \mathrm{e} \AA^{-3}$
112 parameters	$\Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}$
H-atom parameters constrained	

Table 1
Selected geometric parameters ($\AA,{ }^{\circ}$).

Ti1-Cg1	$2.0120(7)$	Ti1-Cl2	$2.2369(4)$
Ti1-Cl1	$2.2410(5)$	$\mathrm{Ti} 1-\mathrm{Cl} 3$	$2.2412(4)$
$C g 1-\mathrm{Ti} 1-\mathrm{Cl} 2$	$113.93(3)$	$C g 1-\mathrm{Ti} 1-\mathrm{Cl} 3$	
$\mathrm{Cl} 1-\mathrm{Ti} 1-\mathrm{Cl} 2$	$102.78(2)$	$\mathrm{Cl} 1-\mathrm{Ti} 1-\mathrm{Cl} 3$	$115.38(2)$
$C g 1-\mathrm{Ti} 1-\mathrm{Cl} 1$	$116.41(3)$	$\mathrm{Cl} 2-\mathrm{Ti} 1-\mathrm{Cl} 3$	$103.30(2)$
			$103.31(2)$
$P_{\mathrm{r}}-\mathrm{C} 3-\mathrm{C} 6$	$3.59(10)$	$P_{\mathrm{r}}-\mathrm{C} 4-\mathrm{C} 7$	$3.18(10)$
$P_{\mathrm{r}}-\mathrm{C} 5-\mathrm{C} 8$	$0.34(10)$		

$C g 1$ is the centroid of the cyclopentadienyl ring and P_{r} is the ring plane defined by atoms C1-C5.

All H atoms were positioned geometrically and refined riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for

Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids and the atom-numbering scheme.
cyclopentadienyl H atoms, and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: COLLECT (Nonius, 1998) and DENZO (Otwinowski \& Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank the Ministry of Education, Youth and Sports of the Czech Republic for financial support of this work, within the framework of research project CZ 340003.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Broussier, R., Ninoreille, S., Legrand C. \& Gautheron, B. (1997). J. Organomet. Chem. 532, 55-60.
Cardoso, A., Clark, R. \& Moorhouse, S. (1980). J. Chem. Soc. Dalton Trans. pp. 1156-1160.
Kirschbaum, K. \& Giolando, D. M. (1991). Acta Cryst. C47, 2216-2218.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pevec, A. (2003). Acta Chim. Slov. 50, 199-206.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

