metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Milan Erben,^a* Ivana Císařová,^b Jaromír Vinklárek^a and Jaroslav Holeček^c

 ^aDepartment of General and Inorganic
Chemistry, Faculty of Chemical Technology, University of Pardubice, Nám. Čs. legií 565,
Pardubice 532 10, Czech Republic,
^bDepartment of Inorganic Chemistry, Charles
University, Hlavova 2030, Prague 128 40,
Czech Republic, and ^cInstitute of Polymeric
Materials, Faculty of Chemical Technology,
University of Pardubice, Nám. Čs. legií 565,
Pardubice 532 10, Czech Republic

Correspondence e-mail: milan.erben@upce.cz

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.002 Å R factor = 0.025 wR factor = 0.065 Data-to-parameter ratio = 22.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 $\ensuremath{\mathbb{C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Trichloro(η^5 -1,2,3-trimethylcyclopentadienyl)titanium(IV)

The crystal structure of the title compound, $[Ti(Me_3Cp)Cl_3]$, where Me₃Cp is 1,2,3-trimethylcyclopentadienyl (C₈H₁₁), was determined as part of our investigation of monocyclopentadienyltitanium(IV) trihalides. The title compound exhibits a three-legged piano-stool geometry. The Ti—ring distance is 2.0120 (7) Å. Received 21 June 2004 Accepted 28 June 2004 Online 17 July 2004

Comment

The structure of the title compound, (I), a catalyst precursor for olefin polymerization, has been analysed.

Fig. 1 shows the η^5 coordination of the trimethyl-substituted cyclopentadienyl ring to the TiCl₃ moiety, which is akin to the structures of similar half-sandwich Cp'TiCl₃ complexes (Cp' is a substituted cyclopentadienyl ligand).

The geometry around the Ti atom can be described as a three-legged piano-stool configuration, where the plane defined by the three Cl atoms and the plane of the cyclopentadienyl ring are almost parallel, with an angle of $0.77 (7)^{\circ}$ between them. The distance between the Ti atom and the centre of the ring is longer than in [Ti(MeCp)Cl₃] [2.0042 (15) Å] and shorter than in [Ti(Me₄Cp)Cl₃] [2.0151 (17) Å] or [Ti(Me₅Cp)Cl₃] [2.0211 (7) Å] (Kirschbaum & Giolando, 1991; Pevec, 2003).

Two of the methyl C atoms, C6 and C7, are displaced slightly out of the ring plane, away from the TiCl₃ fragment (Table 1). The third C atom is displaced much less, with an angle of 0.34 (10)° between the ring plane and the C5–C8 bond. This fact can be attributed to the steric hindrance caused by the Cl atoms, where the Cl2···C8 distance [3.608 (2) Å] is longer than the Cl2···C7 and Cl3···C6 distances [3.295 (2) and 3.340 (2) Å, respectively].

Experimental

The title compound was prepared according to the trimethylsilylation procedure of Cardoso *et al.* (1980). (1,2,3-Trimethylcyclopentadienyl)trimethylsilane, obtained from 1,2,3-trimethylcyclopentadienyllithium (Broussier *et al.*, 1997) and chlorotrimethylsilane, was reacted with titanium tetrachloride (2% excess) in toluene. After evaporation of volatiles, the resulting sticky brown product was purified by repeated vacuum sublimation, yielding 42% of a redorange solid. Suitable crystals of (I) were obtained by sublimation at 10^{-3} Pa, at a temperature of 353 K. Spectroscopic analysis: ¹H NMR (CDCl₃, δ , p.p.m.): 6.72 (*s*, 2H), 2.40 (*s*, 6H), 2.33 (*s*, 3H); ¹³C NMR (CDCl₃, δ , p.p.m.): 139.6, 137.2, 123.5, 16.2, 13.3; ⁴⁹Ti NMR (CDCl₃, δ , p.p.m.): -225.1 (half-width 36.9 Hz); ⁴⁷Ti NMR (CDCl₃, δ , p.p.m.,): -491.4 (half-width 84.6 Hz). Elemental analysis, calculated for C₈H₁₁Cl₃Ti: C 36.75, H 4.24, Cl 40.68%; found: C 36.28, H 4.21, Cl 40.47%.

Z = 2

 $D_x = 1.594 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 2345

reflections $\theta = 1-27.5^{\circ}$

 $\mu = 1.47 \text{ mm}^{-1}$

T = 150 (2) K

 $0.25 \times 0.20 \times 0.20$ mm

Prism, red

Crystal data

$[Ti(C_8H_{11})Cl_3]$
$M_r = 261.42$
Triclinic, P1
a = 6.6790(2) Å
b = 8.3360 (3) Å
c = 10.7120 (4) Å
$\alpha = 82.9070 \ (19)^{\circ}$
$\beta = 83.340 \ (2)^{\circ}$
$\gamma = 67.368 \ (2)^{\circ}$
V = 544.74 (3) Å ³

Data collection

2291 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.024$
$\theta_{\rm max} = 27.6^{\circ}$
$h = -8 \rightarrow 8$
$k = -10 \rightarrow 10$
$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0307P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.025$	+ 0.2233P]
$wR(F^2) = 0.065$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
2488 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
112 parameters	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å,°).

Ti1-Cg1	2.0120 (7)	Ti1-Cl2	2.2369 (4)
Ti1-Cl1	2.2410 (5)	Ti1-Cl3	2.2412 (4)
Cg1-Ti1-Cl2	113.93 (3)	Ce1-Ti1-Cl3	115.38 (2)
Cl1-Ti1-Cl2	102.78 (2)	Cl1-Ti1-Cl3	103.30 (2)
Cg1-Ti1-Cl1	116.41 (3)	Cl2-Ti1-Cl3	103.31 (2)
P_r -C3-C6	3.59 (10)	P_r -C4-C7	3.18 (10)
$P_{\rm r} - C5 - C8$	0.34 (10)	-	

Cg1 is the centroid of the cyclopenta dienyl ring and $P_{\rm r}$ is the ring plane defined by atoms C1–C5.

All H atoms were positioned geometrically and refined riding on their parent C atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for

Figure 1

The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

cyclopentadienyl H atoms, and C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{ea}(C)$ for methyl H atoms.

Data collection: *COLLECT* (Nonius, 1998) and *DENZO* (Otwinowski & Minor, 1997); cell refinement: *COLLECT* and *DENZO*; data reduction: *COLLECT* and *DENZO*; program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL*97.

The authors thank the Ministry of Education, Youth and Sports of the Czech Republic for financial support of this work, within the framework of research project CZ 340003.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Broussier, R., Ninoreille, S., Legrand C. & Gautheron, B. (1997). J. Organomet. Chem. 532, 55–60.

Cardoso, A., Clark, R. & Moorhouse, S. (1980). J. Chem. Soc. Dalton Trans. pp. 1156–1160.

Kirschbaum, K. & Giolando, D. M. (1991). Acta Cryst. C47, 2216-2218.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Pevec, A. (2003). Acta Chim. Slov. 50, 199-206.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.